Maclntyre CR & Heslop DJ. Demystifying COVID-19 pandemic modelling
for policymaking. Global Biosecurity, 2022; 4(1).

EDITORIALS AND COMMENTARIES

Demystifying COVID-19 pandemic modelling for policymaking

C Raina Maclintyre' & David James Heslop'

"University of New South Wales, Australia

Abstract

Mathematical modelling is used widely to inform COVID-19 pandemic policy. Infectious diseases modelling is a
long-established science used to estimate future outcomes under various conditions, that can inform policy
decisions. Each model depends on assumptions made, the specific modelling methods used and the scenarios
explored. Non-modellers can evaluate models using the following principles.
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Mathematical modelling is used widely to inform
COVID-19 pandemic policy. Infectious diseases
modelling is a long-established science used to estimate
future outcomes under various conditions, that can
inform policy decisions. Each model depends on
assumptions made, the specific modelling methods used
and the scenarios explored. Non-modellers can evaluate
models using the following principles.

When is modelling needed?

Modelling may be the only means of answering some
research questions in a rigorous, scientific way and
providing forecasts, scenario analysis and evidence
based policy advice in near real time. ! The randomised
controlled clinical trial (RCT) is thought of as the highest
level of evidence, but the RCT is appropriate for
questions about treatments or interventions. In the case
of pandemic planning, however, the question may be
around a hypothetical event that has not yet occurred or
around interventions that cannot be tested in a RCT. For
example, international border closures cannot be tested
using a RCT. For some questions, a prospective study is
often not feasible if future outcomes or complex
interactions between interventions or future scenarios in
whole populations are of interest. Policy makers can use
modelling to compare a mitigated and unmitigated
epidemic of SARS-COV-2, and determine what measures
may best mitigate it. A model can look at combined
interventions such as vaccines, masks, movement
restriction, contact tracing and testing. If lockdowns are
undesirable, a model can inform what other, less
restrictive measures can control a potential surge.

Modelling of epidemics

Models can look at epidemic, endemic or sporadic
infections, and can also be used to look at animal or
insect to human transmission, and sexually transmitted
infections. Here, we focus on the SARS-COV-2 pandemic
which is spread from person to person by the airborne
route, which is the most rapid spread with the greatest

epidemic potential. The way epidemics spread depends
on the pathogen, the population, how humans behave,
mix and move around, and on public health measures.
The terms epidemic and endemic are widely misused,
but refers to a specific pattern of infection (Box 1).

Epidemic infections are uniquely suited to modelling
because humans exist in mutually exclusive states of
susceptibility, exposure, infection or immunity.
Immunity results from natural infection or vaccination,
and immunity can wane, returning people to the
susceptible state. A model allocates people to these
states, and mathematically determines how they will
transition between states - called a Susceptible, Exposed,
Infected and Recovered (SEIR) model. These can be very
simple or complex, with multiple added compartments
such as contact tracing, testing, quarantine,
hospitalisation or death. A model can also have parallel
streams to account for differences between groups, such
as vaccinated and unvaccinated people.

Policy makers can look at the effect of reducing
movement and mixing (such as through density limits or
a lockdown), test and trace, use masks or vaccinate
people, and how this reduces the spread of infection.
Modelling allows us to simulate these effects for entire
populations and determine how infections may spread in
a range of scenarios with and without single or
combination interventions. It is a science that allows us
to systematically address future spread and compare
different disease control options on a population level,
with a realistic, simulated, age structured population.
For example, if we lift movement restrictions after
achieving 70% vaccination of adults, can indoor mask
use prevent epidemic growth? SEIR modelling is most
commonly used because it is computationally less
intensive and can provide rapid outputs to support
decision-making during a fast moving COVID-19 surge,
such as that occurring now with the Omicron variant of
concern.
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Box 1. Patterns of infectious diseases

Endemic: a disease that exists permanently in a particular region or population. E.g. Malaria,
diabetes. Changes in incidence occur over years, if at all.

Epidemic: An increase in disease that affects many peoples at about the same time in a
given region and may spread through one or several communities. It is defined by rate of
growth, typically days or weeks, and by the basic reproductive number, RO, the average
number of secondary cases caused by an infected person in a completely susceptible
population. The effective R (Rt) is the R value when immunity or interventions are present
to reduce RO. If R>1, the number of cases increases (an epidemic may occur); if R<1, the
number of cases decreases (infection cannot be sustained and dies out). Therefore R=1 is
the epidemic threshold. Epidemic infections (in contrast to endemic infections such as
malaria) can grow exponentially over days or weeks, which is why epidemic and pandemic
diseases require immediate surge capacity in health systems. SARS-COV-2 is a typical
epidemic infection, and will always retain this pattern, much like measles.

Pandemic: An epidemic that spreads throughout the world.

Sporadic: Few cases of disease that do not meet definitions above. Typically these are
zoonotic infections such as human cases of avian influenza.

There are several different modelling approaches other
than SEIR modelling that have been used for SARS-
COV-2. Agent-Based Modelling (ABM) is the most
common alternative. In an ABM autonomously
operating and interacting software entities representing
abstracted humans and other artifacts in a system
interact over time in a synthetic environment. ABMs are
useful when individual behaviour matters, or when you
want to examine more complex interactivity such as
transmission inside households, on public transport, or
the influence of individual decision-making on
outcomes. For highly transmissible respiratory epidemic
infections, if the question is about population level
impacts, the use of a SEIR or ABM does not make a large
difference. ABM can be helpful to examine interactions
at the micro and meso level within population
subgroupings. A barrier to more widespread ABM
utilisation is model validation and computational
demands of scaling up to large populations.2 There are
many other modelling methods including network
models, with transport network modelling useful to
understand how infections can spread through air travel
or other travel modes. Mobile phone data can also be
used to estimate reduction of movement during the
pandemic. 3 Economic modelling can utilise the outputs
of disease modelling to test the cost effectiveness of
competing options in disease control. Geospatial
modelling can be used to identify hot spots for infections
that vary by location, climate and environmental factors,
and phylogenetic modelling can inform control of
emerging infections.

Uncertainty and sensitivity to assumptions
Models have inherent uncertainty - where true values
of given parameters may not be definitive because data

are not available or different studies provide varying
estimates. All the factors that influence future spread of
the pandemic are unknown and may change over time.
For example, a model created in August 2021 may not
include vaccination of children, because it is not yet
approved at that time. In the subsequent months,
vaccination of children may be introduced, further
improving epidemic control and making the model
appear to over-estimate case numbers. A model for the
Delta variant created in late 2021 will not be appropriate
for the Omicron variant, which is newly emerged and has
greater uncertainty around model parameters because
fewer published studies are available. Usually models
test a series of interventions at one time point or
simultaneously (such as vaccination, masks and
movement reduction). These may change in different
combinations due to government response to policy.
Sometimes the data to inform an assumption in a model
may not be available, or there may be a series of studies
with different estimates. For example, when Delta first
emerged, estimates of Ro ranged from 4-8. Estimates of
Ro for Omicron are less certain because there are fewer
studies, but several estimates are much higher than
Delta.

It is important that any published model outlines
which parameters and assumptions are uncertain.
Authors should also state which assumptions the outputs
are most sensitive to. That is, assumptions that create
large changes in model outputs if the values vary. An
example may be the infectious period. There may be
large differences in model outputs if this is assumed to
be 3 days versus 10 days, with 10 days resulting in more
transmission. It may be the Ro — a model that uses the
Ro for the Delta variant will under-estimate the impact
of the Omicron pandemic. Uncertainty should be



addressed with a sensitivity analysis of uncertain and/or
highly influential parameters — this is done by generating
model outputs for a range of possible values for an
uncertain parameter to determine the influence of varied
estimates.

Dire “predictions” that never eventuate

Models do not make hard and fast “predictions”. They
only provide a range of possible scenarios of pandemic
spread under different conditions. We often hear that
models make incorrect and alarmist “predictions”, and
usually this refers to modelling of the worst case scenario
of unmitigated spread. Pandemic planning for
policymakers is necessarily based on worst case
scenarios because the aim is to prevent that scenario ever
occurring. Good modelling should produce worst and
best-case scenarios to inform optimal decision making
and ensure resources for health system surge capacity
are adequate. A modelled worst-case scenario rarely
occurs because governments act to introduce public
health measures when cases start rising, when warned by
modelling or when the health system is overloaded and
starts failing.

Model validation

A good model should provide some validation. This
can be done by fitting the model to observed data, such
as notified cases of COVID-19. If the fit is not good, the
model can be revised by changing different assumptions
until the fit is good. All influential conditions need to be
incorporated into a model to fit it well — the degree of
reduction of human movement and mixing, testing,
tracing, mask wearing, vaccination and any other
interventions that will affect spread. If fitting is done
without incorporating all such factors, the model will
overestimate the impact of included interventions.

How do you assess a model?

To evaluate a model, look at the team, the assumptions
used about the pathogen, the population and the
interventions being tested, and methodological issues
such as uncertainty. The EPIFORGE checklist is
recommended to evaluate a modelling study. 4 In
addition, the following principles can be used to assess
the model.

The team

A multidisciplinary team with modellers, medical
experts and people with field and other experience is
ideal (but not essential) for modelling studies, to ensure
that assumptions used in the model are correct.

General methodology

Have the aims clearly been stated? Is the type of
modelling approach specified, justified and referenced?
Is the model design, verification and validation
described? A model schematic or diagram and table of
parameters in the model with references for data sources
should be provided, as well as differential equations (for
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SEIR models) used in the model. The start and end date
for the modelled outputs is required and should be
justified. The statistical or modelling methods should be
appropriate for the research question and referenced.
The limitations, biases, uncertainty and their
management should be described and addressed. Ideally
the model code should be available.

Population

Have the population characteristics, such as age
structure, been adequately reflected in the model? This
is important because COVID-19 case fatality is highly age
dependent, so a country with an ageing population will
be more severely affected than a country with a young
population. How does the model factor in the mixing of
people? Some models assume homogenous mixing, but
this is not realistic, because mixing is variable. In SEIR
modelling, a who-acquires-infection-from-who matrix
may be used, which estimates the degree of contact
between people by age group. 5

Pathogen

Have the researchers correctly estimated disease
parameters such as the incubation period, serial interval
and duration of viral shedding? The incubation period
matters, as infections with a short incubation period
cause epidemic growth more rapidly. Do they assume
viral shedding to be a constant function over the
infectious period, or use an exponential decline (the
latter being more correct for SARS-COV-2 ¢)? Do they
correctly factor in the proportion of asymptomatic and
pre-symptomatic transmission (which may influence
epidemic growth)? 7 Characteristics including the Ro and
incubation period have changed over time, so it is
essential that models use data for current variants of
SARS-COV-2.

The basic reproductive number, Ro, can be estimated in
some models, while other models use a published
estimate of Ro. Ro is the number of secondary cases
generated from one index case. The lower the Ro, the
easier it is to control a disease. Ro is determined by
characteristics of the organism (infectivity, duration of

infectiousness, incubation period, asymptomatic
transmission) and population characteristics
(demographics, social mixing patterns, population

density). Herd immunity is when the entire population is
protected, whether they have been vaccinated or not,
because the number of susceptible individuals is too
small for infection to spread. The population immunity
needed for herd immunity can be calculated using Ro. 8
The higher Ro for Delta means a higher herd immunity
threshold for COVID-19 control. Herd immunity also
depends on vaccine efficacy, duration of efficacy and
population vaccination rates. 7 The early promise of
vaccines returning us to “normal” life did not eventuate
because few countries have achieved vaccine coverage
above the herd immunity threshold for Delta, and
countries that have come close have encountered waning
vaccine immunity after two doses.
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Table 1. Guide to reading modelling studies.

Area to review

Questions

Research question

* Isclearly stated?
»  Appropriate for modelling?
»  What is the best model methodology for the question?

Research Team

Multidisciplinary expertise?
*  Medical
»  Virology
»  Mathematical
*  Social science
+  Other relevant disciplines

Methodology »  Type of modelling and simulation approach is specified (and referenced)
*  Model design, verification and validation is described
»  Statistical methods are appropriate (and referenced)
+ Limitations/biases and their management are described
Population Is the population realistic?
»  Age structured
«  Other demographics
*  Heterogenous mixing
»  Population density
Pathogen Assumptions relevant for dominant variant of concern (VOC) and referenced?
* Ro
* Incubation period
» Latent period
»  Serial Interval
» Duration of viral shedding
+ Infectiousness function (constant or dynamic)
Interventions Vaccine efficacy (RCT) or effectiveness (observational)

RCT data relevant to dominant VOC and referenced?

Are influential real-world interventions accounted for, how is effectiveness

estimated and referenced?
» Masks
« Testing and case isolation
» Tracing and quarantine of contacts
»  Reduction in movement (density limits, lockdowns)
* Social distancing
*  Border control

Uncertainty *  Have the most influential parameters been identified?
» Isthere high or low certainty of the values of these?
»  How certain are assumptions about these (data driven or estimated)?
* Has a sensitivity analysis been done for the most influential parameters
and parameters that are uncertain?
Other *  What is the modelled setting?

*  Whole population

«  Population subgroup
« Indoors/Household
*  Outdoors

* Transport

*  Other

» Isthe geography realistic?
+ Climate

*  Weather and airflow
+  Topography
* Animal/vector data




GLOBAL

Interventions

What scientific evidence was used to inform
interventions tested in the model? The source of vaccine
efficacy estimates should be checked, noting that efficacy
varies by vaccine. A model of the Delta variant will over-
estimate efficacy by using phase 3 clinical trial data from
2020 or other data prior to Delta circulating. Another
common way that models over-estimate vaccine impact
is by failing to model waning vaccine-induced immunity
after two doses.

Models may account for real-world interventions such
as testing, tracing, mask wearing and movement
reduction, for the most realistic output. Data on
effectiveness of non-pharmaceutical interventions is
more contentious than RCT data on vaccine efficacy, so
should be carefully scrutinised. For example, mask use is
a heterogeneous intervention, ranging from low quality
cloth masks to No5 respirators, and few studies have
estimated the effectiveness of masks in a robust way. The
effectiveness of movement reduction is also difficult to
quantify, but credible estimates are available. ©

Uncertainty and sensitivity analysis

Have the authors addressed uncertainty? Have they
identified the most influential parameters and then done
a sensitivity analysis to test the impact of changes in
assumptions about those parameters? This is important
to demonstrate the uncertainty in the model. A good
example is the Ro. If a new variant of concern emerges
and the Ro is not yet certain, they should use a range of
plausible estimates in a sensitivity analysis. The model
should also be validated in some way, such as fitting to
observed data.

Table 1 provides a guide to evaluating a model.

Conclusion

In summary, good modelling should be
multidisciplinary and transparent in clearly outlining the
methods, assumptions used and data sources. It should
realistically approximate the population, human
behaviour, the pathogen and background interventions
(such as masks, testing and tracing) that may affect the
apparent impact of the intervention of interest (e.g.
vaccines). A transparent model can be reproduced by
other modellers and produce the same answers. A basic
understanding of modelling allows any key stakeholder,
regardless of mathematical skills, to read, interpret and
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appraise a modelling study using the principles outlined
above.
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